Maximum Likelihood Identification of Wiener Models
نویسندگان
چکیده
منابع مشابه
Maximum likelihood identification of Wiener models
The Wiener model is a block oriented model having a linear dynamic system followed by a static nonlinearity. The dominating approach to estimate the components of this model has been to minimize the error between the simulated and the measured outputs. We show that this will in general lead to biased estimates if there is other disturbances present than measurement noise. The implications of Bu...
متن کاملMaximum Likelihood Identification of Wiener Models, Report no. LiTH-ISY-R-2902
The Wiener model is a block oriented model having a linear dynamic system followed by a static nonlinearity. The dominating approach to estimate the components of this model has been to minimize the error between the simulated and the measured outputs. We show that this will in general lead to biased estimates if there is other disturbances present than measurement noise. The implications of Bu...
متن کاملMaximum Likelihood Identification of Wiener Models -- Journal Version, Report no. LiTH-ISY-R-2903
The Wiener model is a block oriented model having a linear dynamic system followed by a static nonlinearity. The dominating approach to estimate the components of this model has been to minimize the error between the simulated and the measured outputs. We show that this will in general lead to biased estimates if there is other disturbances present than measurement noise. The implications of Bu...
متن کاملMaximum likelihood identification of noisy input-output models
This paper deals with the identification of errors–in–variables (EIV) models corrupted by additive and uncorrelated white Gaussian noises when the noise–free input is an arbitrary signal, not necessarily periodic. In particular, a frequency domain maximum likelihood (ML) estimator is proposed. As some other EIV estimators, this method assumes that the ratio of the noise variances is known.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2008
ISSN: 1474-6670
DOI: 10.3182/20080706-5-kr-1001.00457